

UNIVERSIDADE FEDERAL DO PARANÁ

PROCESSO DE OCUPAÇÃO DE VAGAS REMANESCENTES

NÚCLEO DE CONCURSOS

Edital n° 10/2018 – UOVR/COPAP/NC/PROGRAD / UFPR Prova Objetiva – 14/10/2018

INSCRIÇÃO	TURMA	NOME DO CANDIDATO			
ASSINO DECLARAN	DO QUE LI E C	OMPREENDI AS INSTRUÇÕES ABAIXO:	ORDEM		

135 – Matemática

INSTRUÇÕES

- 1. Confira, acima, o seu número de inscrição, turma e nome. Assine no local indicado.
- 2. Aguarde autorização para abrir o caderno de prova. Antes de iniciar a resolução das questões, confira a numeração de todas as páginas.
- 3. Esta prova é constituída de 20 questões objetivas.
- **4.** Nesta prova, as questões objetivas são de múltipla escolha, com 5 alternativas cada uma, sempre na sequência **a**, **b**, **c**, **d**, **e**, das quais somente uma deve ser assinalada.
- **5.** A interpretação das questões é parte do processo de avaliação, não sendo permitidas perguntas aos aplicadores de prova.
- **6.** Ao receber o cartão-resposta, examine-o e verifique se o nome impresso nele corresponde ao seu. Caso haja qualquer irregularidade, comunique-a imediatamente ao aplicador de prova.
- 7. O cartão-resposta deverá ser preenchido com caneta esferográfica preta, tendo-se o cuidado de não ultrapassar o limite do espaço para cada marcação.
- 8. Não será permitido ao candidato:
 - a) Manter em seu poder relógios e aparelhos eletrônicos ou qualquer objeto identificável pelo detector de metais. Tais aparelhos deverão ser desligados e colocados OBRIGATORIAMENTE dentro do saco plástico, que deverá ser acomodado embaixo da carteira ou no chão. É vedado também o porte de armas.
 - b) Usar bonés, gorros, chapéus ou quaisquer outros acessórios que cubram as orelhas.
 - c) Usar fone ou qualquer outro dispositivo no ouvido. O uso de tais dispositivos somente será permitido quando indicado para o atendimento especial.
 - d) Levar líquidos, exceto se a garrafa for transparente e sem rótulo.
 - e) Comunicar-se com outro candidato, usar calculadora e dispositivos similares, livros, anotações, réguas de cálculo, impressos ou qualquer outro material de consulta.
 - f) Portar carteira de documentos/dinheiro ou similares.
 - g) Usar óculos escuros, ressalvados os de grau, quando expressamente por recomendação médica, devendo o candidato, então, respeitar o subitem 5.5.5 do Edital.
 - h) Emprestar materiais para realização das provas.

Caso alguma dessas exigências seja descumprida, o candidato será excluído do processo.

- 9. A duração da prova é de 4 horas. Esse tempo inclui a resolução das questões e a transcrição das respostas para o cartão-resposta.
- **10.** Ao concluir a prova, permaneça em seu lugar e comunique ao aplicador de prova. Aguarde autorização para entregar o caderno de prova e o cartão-resposta.
- 11. Se desejar, anote as respostas no quadro abaixo, recorte na linha indicada e leve-o consigo.

DURAÇÃO DESTA PROVA: 4 horas

RESPOSTAS 01 -06 -11 -16 -02 -07 -12 -17 -03 -08 -13 -18 -04 -09 -14 -19 -05 -10 -15 -20 -

Conhecimentos

Específicos

01 - A distância do ponto P(0,4,1) ao plano x- 2y -z +1 = 0 é:

- b) $\sqrt{6}$
- c) $9\sqrt{3}$
- ►d) $3\sqrt{6}$
- e) 9

02 - A equação do plano que é perpendicular ao vetor (-1,1,0) e passa pelo ponto (2,0,-3) é:

- a) x y + z 8 = 0
- ▶b) -x + y + 2 = 0
- c) 2x 3z + 2 = 0
- d) -2x + y + 3z - 5 = 0
- x y + z 3 = 0

r: $\begin{cases} y=2x+3 \\ z=-x+2 \end{cases}$ e o plano π cuja equação geral é 03 - Sobre a reta $\,r\,$ cuja equação reduzida é dada por

 $\pi: 2x+5y-z+1=0$, identifique como verdadeiras (V) ou falsas (F) as seguintes afirmativas:

- () A reta r é paralela ao plano π .
- () O vetor diretor da reta $r \in \vec{v} = (1, 2, -1)$.
- () O ponto P(4,-2,1) não pertence ao plano π .
- () O ponto de interseção da reta r com o plano xOz é $A\left(\frac{2}{3},0,\frac{4}{3}\right)$.

Assinale a alternativa que apresenta a sequência correta, de cima para baixo.

- a) V F V V.
- **▶**b) F V V F.
- c) V-V-F-F. d) F-F-V-F.
- e) F-V-V-V.

04 - Dada a parábola cujas equações paramétricas são: $x=\frac{12-t^2}{4}$; y=t+2, identifique como verdadeiras (V) ou falsas (F) as seguintes afirmativas:

- () A equação geral da parábola é $y^2 4y + 4x 8 = 0$.
- () A concavidade da parábola está para a direita.
- () O vértice da parábola é V = (2, -3).
- () O eixo de simetria da parábola é paralelo ao eixo 0x.

Assinale a alternativa que apresenta a sequência correta, de cima para baixo.

- V F V F.
- F V V F.
- F V F F. c)
- d) F V V V.

05 - Em Geometria Analítica estudamos a noção de vetor e suas operações. A respeito do assunto, considere as seguintes afirmativas:

- Um vetor \vec{v} é determinado por seu módulo, direção e sentido.
- O produto vetorial $\vec{v} \times \vec{u}$ entre os vetores $\vec{u} \in \vec{v}$ é tal que $\vec{v} \times \vec{u} \perp \vec{u}$ e $\vec{u} \times \vec{v} \perp \vec{u}$.
- O volume de um paralelepípedo definido pelos vetores $\vec{u} = (2,1,3), \vec{v} = (2,-1,4)$ e $\vec{w} = (0,2,1)$ é dado por $V = |(\vec{u},\vec{v},\vec{w})|$ $\acute{\mathbf{e}} V = 2$.
- Se produto escalar entre os vetores \vec{v} e \vec{u} é diferente de 0, então os vetores \vec{v} e \vec{u} são ortogonais.

Assinale a alternativa correta.

- Somente a afirmativa 3 é verdadeira.
- Somente as afirmativas 2 e 4 são verdadeiras.
- Somente as afirmativas 1, 2 e 3 são verdadeiras.
- ▶d) Somente as afirmativas 1 e 2 são verdadeiras.
- e) As afirmativas 1, 2, 3 e 4 são verdadeiras.

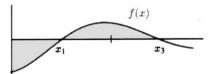
06 - Seja \overrightarrow{ABC} um triângulo tal que $\overrightarrow{AB} = (2, -1, \alpha)$ e $\overrightarrow{BC} = (-1, 1 + 4\alpha, -\alpha)$. Para que o triângulo \overrightarrow{ABC} tenha um ângulo reto no vértice A, o valor de α deve ser:

- a) -1
- b) 0.
- **⊳**c) 1/2.
- d) 2.
- e) 5

07 - A superfície descrita pela equação $2x^2 + 3y^2 + 4x + 12y - z + 15 = 0$ é um:

- a) Hiperboloide de duas folhas com vértice no ponto (-1,-2,-1).
- ▶b) Paraboloide elíptico com vértice no ponto (-1,-2,1).
- c) Paraboloide hiperbólico com vértice no ponto (-1,-2,1).
- d) Elipsoide com centro no ponto (1,2,-1).
- e) Esfera com centro no ponto (1,-2,1).

08 - Sejam f(x) e g(x) duas funções tais que f(1)=8, f'(1)=-2, g(8)=1 e g'(8)=3. Com base nisso, se h(x)=f(g(x)), o valor de h'(8) será:


- a) 8
- b) 1
- ►c) -6
- d) -2
- e) -16

09 - Considere $f(x) = x \cdot 2^x$. Então o valor da derivada f'(0) é igual a:

- a) 0
- **▶**b) 1
- c) In(2)
- d) 2
- e) $1 + \ln(2)$

10 - A figura ao lado representa o gráfico de f(x).

Sabendo que cada uma das regiões sombreadas possui área 1, assinale a alternativa que apresenta o valor de $\int_0^{x_3} f(x) dx$.

- a) –2
- b) -1
- **▶**c) 0
- d) 1
- e) 2

**11 - Considere as funções x - 1 e $x^2 - 1$. A partir do exposto, é correto afirmar que:

- a) $x 1 \le x^2 1, \forall x \in R$.
- b) $x-1 < x^2 1$, para 0 < x < 1.
- ►c) $x^2 1 = x 1$, para x = 1 e x = 1.
- d) $x^2 1 < x 1$, se |x| < 1.
- e) $x^2 1 \le x 1$, se $|x| \ge 1$.

*12 -Considerando a função f(x)menor inteiro ou igual a x, é correto afirmar que:

- a) Para $n \in Z$, $\lim_{x \to a} f(x) = n$.
- b) Para $n \in \mathbb{Z}$, $\lim_{x \to \infty} f(x) = n$.
- c) Para $n \in \mathbb{Z}$, $\lim f(x) = n$.
- d) Para $x_0 \in R$, $\lim_{x \to x} f(x) = x_0$.
- e) Para $n \in \mathbb{Z}$, $\lim_{x \to n} f(x) = n + 1$.

^{**} Questão com resposta alterada.

^{*} Questão anulada, seu valor será distribuído entre as questões válidas.

13 - Calcule a derivada da função $(x^3+1)^{50}\cos(x)$, com $x \in (-\infty,+\infty)$.

a)
$$50(x^3+1)^{49}\cos(x)$$

b)
$$50(x^3+1)^{49}$$
 sen(x)

c)
$$50(x^3+1)^{49}$$
 $sen(x)+(x^3+1)^{50}\cos(x)$

►d)
$$150x^2(x^3+1)^{49}\cos(x)-(x^3+1)^{50}sen(x)$$

e)
$$50x^2(x^3+1)^{49}\cos(x)+(x^3+1)^{50}sen(x)$$

14 - Considere a função $f(x) = \begin{cases} x^2 + 5x, & \text{se } x \ge 0 \\ s \cdot en(5x), & \text{se } x < 0 \end{cases}$. É correto afirmar que:

- f NÃO é derivável em x = 0.
- f NÃO é contínua em x = 0.

ightharpoonupc) a derivada de f em x = 0 existe e vale 5.

d)
$$\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^-} f(x)$$
.

f é derivável em todos os pontos de \mathbb{R} , exceto em x = 0.

15 - Sejam $x_0 = \frac{1}{2}$ e $f(x) = x^2 - x + 3$, definida para $X \in \mathbb{R}$. Considere as seguintes afirmativas a respeito de x_0 e f:

- 1. O único ponto crítico de f é x_0 .
- 2. x_0 é um ponto de máximo local para f.
- 3. Temos que $f(x) \ge \frac{11}{4}$ para todo $X \in \mathbb{R}$.
- 4. A função f não admite pontos de inflexão.

Assinale a alternativa correta.

- Somente a afirmativa 1 é verdadeira.
- Somente as afirmativas 1, 2 e 3 são verdadeiras.
- Somente as afirmativas 2 e 3 são verdadeiras.
- Somente as afirmativas 3 e 4 são verdadeiras.
- ▶e) Somente as afirmativas 1 e 4 são verdadeiras.

16 - Sobre a função $f:(0,\infty)\to\mathbb{R}$ dada por $f(x)=(log_7x)^4$, é correto afirmar:

- a) A imagem de f é \mathbb{R} .
- ▶b) $\lim_{x\to 0} f(x) = \infty$.

- c) $\lim_{x\to 0} f(x) = 0$. d) $\lim_{x\to \infty} f(x) = 0$. e) $f(x) = 4\log_7 x$ para todo x > 0.

17 - Encontre a área entre $y = x^2 - 1$ e o eixo x.

- a) $\frac{1}{2}$
- b) $\sqrt{2}$
- ►d) $\frac{4}{3}$ e) $\frac{2}{3}$

18 - 06 -A imagem da função $f:\mathbb{R} o\mathbb{R}$ dada por $\,f(x)=x^6+6x-3\,\,$ é o intervalo:

- a) [-2,3].
- b) (0,1). c) $(-\infty,\infty)$. d) $(0,\infty)$.
- ►e) (-8,∞).

19 - 11 -O valor de $\int_0^{\pi/4} cos^2 \, x dx$ é:

- ▶a) $\frac{\pi+2}{8}$ b) $\frac{\pi-2}{8}$ c) $\frac{\pi+1}{8}$ d) $\frac{\pi-3}{6}$ e) $\frac{\pi+1}{4}$

20 - 17 -Sobre a função $f\colon \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \frac{1+2x}{3+x^2}$, é correto afirmar que:

- ►a) $\lim_{x\to +\infty} f(x) = 0$.
- $\lim_{x\to-\infty}f(x)=+\infty.$ b)
- $\lim_{x\to 0^+} f(x) = +\infty.$ c)
- $\lim_{x\to 0^-} f(x) = -\infty.$ d)
- $\lim_{x\to 0}f(x)=0.$ e)